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should be followed by a full search for homometric 
pairs within the appropriate subset. 

References 

BRAFMAN, O. & STEINBERGER, I. T. (1966). Phys. Rev. 143, 
501-505. 

BUERGER, M. J. (1977). Z. Kristallogr. 145, 371-411. 
DORNBERGER-SCHIFF, K. & FARKAS-JAHNKE, M. (1970). Acta 

Cryst. A26, 24-34. 
H,~.GG, G. (1943). Ark. Kemi Mineral Geol. 16B, 1-6. 
JAIN, P. C. & TRIGUNAYAT, G. C. (1977). Acta Cryst. A33, 

257-260. 
LIpSON, H. & COCHRAN, W. (1966). The Determination of Crystal 

Structures, 3rd ed., p. 140. Ithaca, New York: Cornell Univ. Press. 
MARDIX, S. (1986a). Phys. Rev. B, 33, 8677-8684. 

MARDIX, S. (1986b). Bull. Mineral. 109, 131-142. 
MARDIX, S., KALMAN, Z. H. & STEINBERGER, I. T. (1970). Acta 

Cryst. A26, 599-603. 
PATTERSON, A. L. (1939). Nature (London), 143, 939-940. 
PATTERSON, A. L. (1944). Phys. Rev. 65, 195-201. 
PATTERSON, A. L. & KASPAR, J. S. (1959). International Tables 

for X-ray Crystallography, Vol. II, pp. 342-349. Birmingham: 
Kynoch Press. (Present distributor Kluwer Academic Publishers, 
Dordrecht.) 

PAULING, L. (1945). The Nature of the Chemical Bond. Ithaca, 
New York: Cornell Univ. Press. 

STOUT, G. H. • JENSEN, L. H. (1968). X-ray Structure Determina- 
tion, p. 345. New York: MacMillan. 

TOKONAMI, M. & HOSOYA, S. (1965). Acta Cryst. 18, 908-916. 
VERMA, A. R. & KRISHNA, P. (1966). Polymorphism and Polytypism 

in Crystals. New York: John Wiley. 
ZHDANOV, G. S. (1945). C. R. (Dokl.) Acad. Sci. URSS, 48, 43. 

A c t a  Crys.t. (1990). A46, 138-142 

A Method for Calculating Bond Valences in Crystals 

BY M. O'KEFFFF 

D e p a r t m e n t  o f  Chemis try ,  A r i z o n a  S ta t e  Universi ty,  Tempe,  A Z  85287, U S A  

(Received 3 July 1989; accepted 25 September 1989) 

Abstract 

A method of calculating the expected bond valences 
from the connectivity matrix of complex crystals is 
described. The method is exact (does not require 
iteration) and is suitable for implementation on a 
microcomputer. 

Introduction 

A major advance in inorganic solid-state chemistry 
has been the development of the bond valence method 
for predicting and interpreting bond lengths in crys- 
tals. In this method valences are assigned to each 
bond in the crystal and then, from known correlations 
(Brown & Altermatt, 1985; Brese & O'Keeffe, 1990) 
between bond valence and bond lengths, the expected 
bond lengths can be calculated. Alternatively, 
observed bond lengths can be interpreted in terms of 
valences. The method, and its historical development, 
is now well documented (e.g. Brown, 1981; O'Keeffe, 
1989) and its advantages over other methods (such 
as using sums of radii) for predicting bond lengths 
in crystals are well established. This paper is con- 
cerned with an algorithm for implementing the 
method for predicting bond lengths in complex 
crystals. 

The discussion here is restricted to crystals in which 
there are bonds only between 'cations' and 'anions' 
(named as such merely for convenience). Let there 
be m crystallographically distinct cations and n crys- 

tallographically distinct anions. Then we recognize 
the possibility of there being as many as m n  kinds of 
bond, each of which may, in principle have a different 
valence. 

The sum of the individual valences (v) of the bonds 
from each atom must be equal to the total atom 
valence (V), so there will be m + n -  1 independent 
sums of the sort 

Y. v,j= E. (1) 
J 

However, if we had mn bonds there would be 
m n -  m - n + 1 = ( m - 1)(n - 1) degrees of freedom 
remaining. It may be seen then that, for m, n > 1, in 
general bond valence sums do not suffice to determine 
individual bond valences. 

A solution to this problem was proposed by Brown 
(1977) who suggested that individual valences should 
be made as nearly as possible equal to each other, 
subject to the bond valence constraints. Brown 
developed an iterative method to implement this idea 
and showed that bond lengths predicted were gen- 
erally in excellent agreement with those observed. 
Brown (1987) also remarked that it should be 
profitable to pursue the apparent similarity (Mackay 
& Finney, 1973) of a bond valence network to elec- 
trical circuits to which Kirchhoff's laws may be 
apr,lied. This analogy is somewhat misleading 
(O'Keeffe, 1989); nevertheless the idea is very fruitful 
and leads to an algorithm for direct computation of 
valences in complex crystals which overcomes the 
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difficulties identified by Brown (1987) and which is 
now described. 

Valence constraints from the connectivity mat~ix 

The connectivity matrix as used here is an m x n 
matrix in which the entries are the number of bonds 
between atoms. An example, that of CaAl12019 
(Wagner & O'Keeffe, 1988), is given in Fig. 1. From 
the matrix, reading across one can see that AI(1) is 
bonded to 2 O(1), 2 O(2), 1 0(3)  and 1 O(4), and 
reading down that O(1) is bonded to 2 AI(1), 1 Al(2) 
and 1 Al(4) etc. 

Consider now a general case where cations A and 
B are both bonded to anions X and Y. The Brown 
Ansatz requires that VAX- VAy and VBx- VBy be as 
small as possible. It may be shown (O'Keeffe, 1989) 
that when valence constraints are taken into account, 
this condition may be written 

IAAX --  l) A y "[- I.) B y - -  I.)BX ~- O. (2) 

Equation (2) is equivalent to setting to zero the 
sum of valences (taken with alternating signs) around 
a ring A-X-B-Y  in the structure. However such a ring 
need not actua!ly occur in the crystal, but a circuit of 
this type will occur in the connectivity matrix as 
illustrated below. 

Equation (2) is rewritten in the form 

( VAX -- r A y )  = ( V e x  -- VBV ) (3) 

to emphasize that we are requiring the differences in 
the valences from A to be equal to the differences in 
valences from B. A better approach (O'Keeffe, 1989) 
includes weights (discussed below) to take into 
account that the average valence of bonds from A 
may be very different from the average valence of 
bonds from B; i.e. 

(VAx--VAy)/SA=(Vex--Vny)/SB. (4) 

60(1) 60(2) 
Ca 6 
6Al(1) 12 12 
2A1(2) 6 
2A1(3) 6 
AI(4) 6 
Al(5) 

(a) 

20(3) 20(4) 30(5) 
6 

6 6 
2 

O(1) 0(3) 0(2) 0(5) 
AI(2) a /3 
Al(1) 7 8 e 
Al(5) n 
Ca ,. r 
Al(3) X /z 
AI(4) v 

(b) 

0(4) 

0 

Fig. 1. (a) Connectivity matrix for CaAll2Ol9. (b) Rearranged 
connectivity matrix. 

If atom A is bonded to X and Y, atom B is bonded 
to X and Z and atom C is bonded to Y and Z, the 
equation corresponding to (2) is 

1)AX - -  D A y  "~ l J C y  - -  I.)CZ "It- 1)BZ - -  l )BX -~" O. (5) 

This corresponds to a vector sum now around a 
ring X-A-Y-C-Z-B but again such a ring need not 
occur in the crystal structure, although a correspond- 
ing circuit will appear in the connectivity matrix. With 
weights, (5) becomes by analogy with (4) 

( VAX -- 1.)Ay) / S A "Jr( 1.)Cy-- I)CZ) / Sc'-~- ( VBZ -- I.)BX ) / S  B =0. 
(6) 

One can continue with equations involving 2r-rings 
(r -- 4, 5 , . . . )  but in practice I have rarely come across 
a crystal structure which required consideration of 
equations with r > 3. Equations of the type (4) and 
(6) are here called circuit equations. 

An important point is that the bond valence con- 
straints [(1)] taken with the circuit equations [e.g. (4) 
and (6)] always constitute a set of linear equations 
that have a unique set of solutions for the bond 
valences for a structure (O'Keeffe, 1989). This paper 
is concerned with developing a procedure to identify 
rapidly the circuit equations - the bond valence sums 
are of course trivially written down - and then solving 
for the valences. I first illustrate the procedure for 
Camll2Ol9. 

For convenience in exposition, the connectivity 
matrix is rearranged as in Fig. l (b) ,  with the entries 
being symbols for the magnitudes of the bond valen- 
ces [thus a =/)Al(2)O(1)]. It may be seen that CaAl12019 
contains 11 different kinds of atom and 13 kinds of 
bond (valences a-v) .  There are ten independent 
valence sums so three independent equations of the 
type (3) and (5) are needed. These can be read off 
the connectivity matrix in Fig. l (b)  as follows. The 
four-membered circuits are afl~7 and ~K/xA. The six- 
membered circuits are e~O~TK~ and e~'0r//zA. From 
these we have [with sl to s5 being weights associated 
with bonds from Al(2), Al(1), Al(5), Ca and Al(3) 
respectively] 

( ~ - ~ ) l s ,  + ( 8 -  y)/s2=0 

( L - -  K ) /  S4"q-(lJl, - -  t~ ) /  S 5 : 0  

( E - - ~ ) / S 2 " ~ - ( O - - n ) / S 3 " J F ( K - - I , ) / S 4 - ' O  

( e - r ~ ) l s 2 + ( o - n ) l s 3 + ( ~ - ; t ) / s s = O .  

(a) 

(b) 

(c) 

(d) 

It should be clear that ( d ) =  (b)+(c) so we have 
three independent equations. These three, combined 
with the ten independent valence-sum equations, pro- 
vide a set of 13 linear equations for the 13 valences. 

A computational strategy for complex crystals 

The equations in the above example were readily 
obtained by inspection, and the resulting equations 
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can be solved by hand, but the problem becomes 
more suitable for computer methods for more com- 
plex crystals. 

In a matrix of size m × n one has the possibility of 
as many as mn non-zero entries. If there are no 
non-zero entries it may be fairly easily (but not 
simply) shown that the number of 2r circuits that do 
not contain 2 ( r - 1 )  or smaller circuits is 

N r = m ! n ! / [ 2 r ( m - r ) ! ( n - r ) ! ] .  (7) 

This number is much greater than the number of 
independent equations needed which is ( m - 1 ) x  
( n - 1 )  in the case of all non-zero entries. In a real 
crystal structure, coordination numbers are usually 
rather small (say 2-12) so the number of non-zero 
entries in the connectivity matrix of a complex crystal 
is much less than the possible number. The number 
of circuits is correspondingly drastically reduced. 

As an example of a complex crystal I use the 
structure of BaGe205 II (Ozima, 1985) for which 
m = 13 and n = 20. Thus there are 33 crystallographi- 
cally distinct atoms in the structure. If every cation 
were bonded to every anion there would be 13 x 20 = 
260 bonds and 1 3 × 1 2 × 2 0 × 1 9 / 4 = 1 4 8 2 0  four- 
membered circuits and 13 × 12× 11 × 2 0 x  19× 18 /6=  
1 956 240 six-membered circuits. In fact the number 
of distinct bonds is 76. Thus .one needs 7 6 - 3 2  = 44 
circuit equations. It transpires that there are 74 four- 
membered circuits, but these do not yield 44 indepen- 
dent equations, so one must include six-membered 
circuits of which there are 695. One then has 33 + 74 + 
695=802 equations which in fact have a unique 
solution for the 76 individual bond valences. 

The numbers given above suggest an appropriate 
strategy for computing. First the connectivity matrix 
is derived (for the purpose of this paper that may be 
taken as given) and the bond valence sum equations 
set out. The connectivity matrix is then scanned for 
four-membered circuits (this will take of the order of 
N2 loops) and the circuit equations tested for a unique 
solution. This is most conveniently done via a singular 
value decomposition (SVD) of the matrix of 
coefficients. I use the algorithms S V D C M P  and 
S V B K S B  presented by Press, Flannery, Teukolsky & 
Vetterling (1986) which appear to be very stable. If 
there is a unique solution (it should be stressed that 
the problem is never overdetermined) then the prob- 
lem is finished as the SVD leads directly to the 
required bond valences. If there is not a unique solu- 
tion then the connectivity matrix is scanned for six- 
membered circuits (now requiring the much larger 
number of N3 loops) and again a SVD is used to 
search for a unique solution. I have not yet found a 
non-trivial crystal structure which requires eight- 
membered circuits (it would require that the structure 
contain at least eight-membered rings in which every 
atom were of a different kind, and at the same time 

the absence of smaller rings involving all these 
atoms*). 

This method, which however requires a lot of 
storage for a large problem, appears to be much more 
efficient in time than any procedure that culls redun- 
dant equations before attempting their solution. 

The example of BaGe205 given above is probably 
as complex as one is likely to meet in practice. Using 
a microcomputer (Macintosh II) it takes approxi- 
mately 20 min to find the six-membered circuits and 
20 min for the SVD of the 802 x 76 matrix and obtain- 
ing the valences. As the time required scales roughly 
as (ran) 3, this size of problem is near the practical 
limit for the present generation of microcomputers. 
Problems of a more usual size, such as that of 
Caml~2Ow or Na2PO3F (discussed below), take a few 
seconds. 

The use of weights 

It is my experience that the best weight s to use in 
the circuit equations is the Pauling bond strength 
which is the same as the average valence of the bonds 
from the atom in question (i.e. atom valence/coordi- 
nation number). If the weights are set equal to unity, 
one finds sometimes when there is a very large range 
of bond valence [as in the example of Na2PO3F 
considered by Brown (1977)] that the valences of the 
weakest bonds can actually become negative. 

In fact use of weights equal to the Pauling bond 
strength gives results very similar to those originally 
reported by Brown (1977) for Na2PO3F (Durand, Cot 
& Galign6, 1974). Table 1 shows a comparison of 
valences calculated by the present method (with and 
without weights) with those calculated by Brown's 
iterative method. The agreement when weights are 
used is remarkably close. 

In most instances the results are not very sensitive 
to the weights used. In the example of CaAl12019, 
the bond lengths predicted using no weights differ by 
only ---0.002 A, from those predicted using weights 
equal to the Pauling bond strength [which ranges 
from 1/6 for Ca-O bonds to 3/4 for Al(2)-O bonds]. 

Cu n, Cum and related oxides 

One may also use weights in the bond valence sums. 
An example of the possible utility of such a procedure 
is provided by the oxides of copper which are cur- 
rently of considerable interest. As is well known, in 
such compounds Cu n or Cum have a primary coordi- 
nation of four coplanar 0 atoms and often one or 
two additional coordinating atoms further away. The 
bonds to the further atoms have a strong antibonding 
component and are consequently much weaker than 

* A simple example (there is no simpler) of a structure with only 
an eight-membered circuit is that of the 8H (ccch) modification 
of SiC for which the connectivity matrix is (3100/0310/0031 / 1003), 
but here the valences can be found by inspection. 
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Table 1. Comparison of  valences calculated by the 
present method with those calculated by Brown (1977) 

for Na2PO3F 

' C a l c . l '  refers to calcula t ions  wi thout  weights and  'Calc .2 '  refers 
to calculat ions  using weights  as descr ibed in the text. 

Calc.1 Calc.2 Brown 

Na(1)-O(2) 0.22 0.17 0.17 
Na(1)-O(4) 0.13 0.12 0.09 
Na(1)-O(5) 0.16 0.13 0.16 
Na(1)-O(6) 0.13 0.12 0.11 
Na(1)-F(2) -0.08 0.08 0.09 

Na(2)-O(1) 0.24 0-20 0.20 
Na(2)-O(2) 0.25 0.20 0.21 
Na(2)-O(3) 0-24 0.20 0.20 
Na(2)-O(4) 0-16 0.14 0.13 
Na(2)-O(6) 0.16 0.14 0-15 
Na(2)-F(1) -0.03 0.11 0.10 

Na(3)-O( 1 ) 0.20 0.19 0.18 
Na(3)-O(2) 0.21 0.20 0.20 
Na(3)-O(3) 0.20 0.19 0.18 
Na(3)-O(4) 0.12 0.14 0.12 
Na(3)-O(5) 0.15 0.15 0.19 
Na(3)-O(6) 0.12 0.14 0.13 

Na(4)-O(1) 0.25 0.21 0.21 
Na(4)-O(3) 0.25 0.21 0.21 
Na(4)-O(4) 0.17 0.15 0.15 
Na(4)-O(5) 0-20 0.16 0.15 
Na(4)-O(6) 0.17 0.15 0.16 
Na(4)-F(I) -0.02 0.12 0.12 

P(1)-O(1) 1.32 1.40 1-40 
P(1)-O(2) 1.32 1.43 1.43 
P(1)-O(3) 1.32 1.40 1.40 
P(1)-F(I) 1-05 0.76 0.78 

P(2)-O(4) 1.30 1-33 1.27 
P(2)-O(5) 1.33 1.43 1.48 
P(2)-O(6) 1.30 1.33 1.33 
P(2)-F(2) 1.08 0.92 0.91 

Table 2. Observed and calculated bond lengths (A,) 
for Ba2YCu307 

Both the Cu a toms  are a s sumed  to have the same va lence  (7/3)  
and  Rcu o = 1.70 A. Calc.1 is wi thout  weights in the valence  sums,  
Calc.2 is with a weight  o f  1/4 taken  for  the C u ( 2 ) - O ( 4 )  bond .  

Obs.  Calc.1 Calc.2 

Ba-O(l) 2.89 2.86 2.82 
Ba-O(2) 2.98 2.93 3.14 
Ba-O(3) 2.96 2.93 3.14 
Ba-O(4) 2.75 2.85 2.76 

Cu(l)-O(1) 1.94 1.90 1.94 
Cu(1)-O(4) 1.86 1.90 1.86 
Cu(2)-O(2) 1-93 2.00 1.94 
Cu(2)-O(3) 1.96 2.00 1.94 
Cu(2)-O(4) 2.31 1.93 2.24 

the primary bonds. Such an effect can be mimicked 
by reducing the contribution to the bond valence sums 
of the weaker bond. A weight factor of 1/4 has been 
arbitrarily chosen. To implement this correction in 
practice, the number of the weaker bonds in the bond 
valence sum is reduced by a factor of 1/4 (so that 
this number may now not be an integer) and the 
subsequently calculated valences of these bonds is 
reduced by the same factor. 

An example of the effect of such a procedure on 
the calculated bond lengths in Ba2YCu307 [in which 

the valence of all Cu atoms has been set equal to 
2.33; compare O'Keeffe & Hansen (1988)] is shown 
in Table 2. It is satisfying that the effect of weighting 
is to model more accurately the rest of the Cu-O 
bonds in the structure. 

Further work is necessary to see whether a scheme 
can be developed to apply universally to bonds from 
these and other cations such as Mn In. The empirical 
nature of the applied weight is not really at odds with 
the spirit of the bond valence method which so far 
has a strong empirical component [but compare 
Burdett (1988)]. The alternative, which I find less 
satisfactory, is simply to fix the valence of the 'weak' 
bonds at a value consistent with their observed bond 
lengths (Brown, 1989). 

Comments 

The method outlined above requires as input only 
the connectivity matrix and-atomic valences. When 
comparing predictions with known structures I gener- 
ate the connectivity matrix using as input only the 
space group, lattice parameters and atomic coordi- 
nates. A criterion is needed to determine the existence 
of a bond (Altermatt & Brown, 1985), but in practice 
the method is not likely to work well when there is 
a real ambiguity about the existence of a bond. 

A weakness of the method (but one that suggests 
avenues for further development) is that it assumes 
that all bonds from a given atom to crystallographi- 
cally equivalent neighbors have the same valence and, 
by implication, the same length. In general this is not 
the case. Thus in the corundum form of A1203 (which 
should be sufficiently familiar) there is only one kind 
of A1 and one kind of O atom but two kinds of A1-O 
bond that have significantly different bond lengths. 
The connectivity matrix does not distinguish between 
these two kinds of bond. A possible solution to this 
problem is to use the predicted bond lengths as a 
starting point in the application of a further pro- 
cedure, along the lines of molecular mechanics, that 
allows the crystal to relax subject to the constraints 
of interatomic forces. 

This work was supported by a grant (DMR88  
13542) from the National Science Foundation. 

APPENDIX 
Fortran code to find circuits 

The following fragment of code, written in a dialect 
of Fortran (in which statements are separated by 
semicolons for economy) will find the coordinates 
(row, column) of entries in a connectivity matrix of 
dimensions B(m, n) that form four-circuits and six- 
circuits, m and n are the numbers of cations and 
anions respectively. It uses for auxiliary storage an 
integer array (initially of zeros) of dimensions 
NP[m, n(n - 1)/2, 2] which stores the coordinates of 
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all pairs of non-zero entries in each row. In practice, 
at the points (C) where the circuits are identified, 
appropriate entries are made in a matrix of 
coefficients of the circuit and sum equations. 

NN=(N'(N-I))/2 
DO{I=I,M);L=O;DO(J=I,N-I);DO{KzJ+I,N);L=L+I 

IF(B{I,J).NE.0.0.AND.B(I,K).NE.0.0) THEN 
NP(I,L,I)-J;NP(I,L,2)=K 

ENDIF 
ENDDO;ENDDO;ENDDO 
N4-0 ! find 4-circuits 
DO(I-I,M-I):DO(J=I+I,M);DO(K~I,NN) 

IF(NP(J,K,I)-0) CYCLE 
IF(NP(I,K,I)-NP(J,K,I).AND.NP(I,K,2)-NP(J,K,2)) THEN 

N4=N4+I;NI~NP(I,K,I);N2=NP(I,K,2) 
4-circuit in rows I,J and coluntns NI,N2 

ENDIF 
ENDDO;ENDDO:ENDDO ! found N4 4-circuits 
N6=0 ! find 6-circuits 
DO(I~I,M-2);DO(J=I+I,M-I);DO(KI=I,NN):DO(LI=I,NN) 

DO(KI-I,2):DO(K2=I,2) 
JI-2-KI/2;J2-2-K2/2 
IF{NP(I,KI,KI)-Np(J, LI,K2).AND.NP(I,KI,JI).NE.NP(J,LI,J2])THEN 

DO(K-J+I,M);DO(L=I,NN);DO(K3-1,2) 
J3=2-K3/2 
IF(NP(I,KI,JI)-NP(K,L,K3).AND.NP(J,LI,J2)-NP(K,L, J3)) THEN 

N6-N6+I;NI-NP(I,KI,KI):N2-NP{I,KI,JI);N3=NP(J, LI,J2) 
6-circuit: row 1 - I cols N1 and N2 

row 2 = J cols N1 and N3 
row 3 = K cols N2 and N3 

ENDIF 
ENDDO;ENDDO;ENDDO 

ENDIF 
ENDDO;ENDDO;ENDDO;ENDDO;ENDDO;ENDDO ! found N6 6-circuits 
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Abstract 

The advantages of the cut or section method in 
describing quasicrystal structures and phason defects 
are given. The real and reciprocal quasilattice formu- 
lation is derived straightforwardly. It is shown that 
the linear phason strain which leads to the quasilattice 
distortion is equivalent to a rotation of physical space 
relative to the high-dimensional space. A continuous 
rotation of the physical space will make the quasilat- 
tice deviate from its idealized form and turn gradually 
into a periodic lattice. The derivation of a geometrical 
relationship between the icosahedral quasilattice and 
the corresponding b.c.c, lattice becomes simple and 
clear. This will be beneficial to the construction of 
a quasicrystal structure model by reference to the 
corresponding b.c.c, crystal structure. 

I. Introduction 
Soon after the discovery of icosahedral quasicrystals 
in rapidly solidified A1-Mn alloys (Shechtman, Blech, 

*The project is supported by the National Natural Science 
Foundation of China. 

? Also at CCAST (World Laboratory), PO Box 8730, Beijing, 
People's Republic of China. 
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Gratias & Cahn, 1984), great attention was paid to 
the description of quasicrystal structure which has a 
long-range quasiperiodic translational order and 
long-range orientational order. The quasicrystal 
structure offers a new kind of incommensurate crystal 
structure. Its Fourier transform consists of a 8 func- 
tion as for periodic crystals but the point symmetries 
are incompatible with traditional crystallography. 
Some authors proposed a density wave description 
of quasicrystal structures (Kalugin, Kitaev & Levitov, 
1985; Bak, 1985a, b; Levine, Lubensky, Ostlund, 
Ramaswamy, Steinhardt & Toner, 1985; Lubensky, 
Ramaswamy & Toner, 1985; Jaric, 1985; Nelson & 
Sachdev, 1985; Sachdev & Nelson, 1985). Others 
described the quasicrystal structure by a technique 
based on projection from a high-dimensional lattice 
to obtain the quasicrystalline lattice (Kramer & Neri, 
1984; Kalugin, Kitaev & Levitov, 1985; Duneau & 
Katz, 1985; Elser, 1985, 1986). It was shown that the 
analytical formulation of quasicrystal structures 
derived from the projection method is identical with 
the density wave description (Li & Wang, 1988). The 
quasicrystalline lattice can also be obtained by the 
generalized dual method (Socolar, Steinhardt & 
Levine, 1985; Levine & Steinhardt, 1986; Socolar & 
Steinhardt, 1986) or the multigrid method (de Brujin, 
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